
8

Programming Tools for WSNs

Crnjin, Aleksandar

Abstract - As with all other computing devices,
sensor nodes have to be programmed in order to be
able to do something useful. The similarity, for the
most part, ends there. There is scant similarity
between programming a home computer with 2
gigahertz CPU and gigabytes of RAM and storage
and programming a tiny device with just a dozen of
kilobytes of RAM and an 8-bit processor running on
just a few kilohertz. Still, programming sensor
networks isn’t all that similar to embedded devices
either: Programming embedded systems typically
amounts to writing an assembly program and loading
it into programmable ROM of the embedded device,
while a sensor node usually has an operating system
(such as TinyOS or ConTiki) which provides support
for basic I/O operations, operation of the radio
transceiver and so on. This article introduces the
reader to general issues in sensor network
programming and focuses on two different
programming paradigms: NesC programming, for
TinyOS compatible sensor nodes, and the Java
Squawk virtual machine, created for Sun SPOTs.

1. General Issues in Sensor Network
Programming

In personal computers, OS primitives are used
to achieve hardware abstraction, thus lifting the
burden of operating the peripherals directly from
the programmer. Clearly, that approach is
desirable in sensor nodes as well. Still, due to
scarce, scaled resources of a sensor node,
some compromises are required, most notably
the need to conserve energy resources by
providing an implicitly energy efficient
programming model.

The first obstacle we have to overcome is to
choose the right operating system for the sensor
node. All conventional OSes for embedded
systems (such as Windows CE or PalmOS)
require a ROM capacity of a hundred kilobytes
or more; sensor nodes, however, typically have
only a few kilobytes. The most popular solution
today is the TinyOS, developed by U.C.
Berkeley. Another option is the Java Squawk
virtual machine, developed by Sun
Microsystems for their Sun SPOT project. This
article focuses on these two paradigms.

2. The TinyOS Operating System

For sensor nodes, a specialized operating
system had to be devised; one that would
provide the necessary primitives to operate the
sensor node hardware, but would also cope with
the quite limited resources of a sensor node.
These limitations include:
Not enough memory for stack. All TinyOS
programs have to operate within a single
context, as it is impossible to perform traditional
context switching, due to a very small amount of
memory available for stack. This also means
that TinyOS programs can’t rely on registers to
save state.
Limited amount of memory. This means that
what available memory there is has to be
allocated carefully. Dynamic allocation of
memory is prohibited; the TinyOS components
are arranged into a configuration at compile-
time, and individual components each get their
preassigned portion of memory, the memory
frame.
Limited amount of energy. Special care is
taken to ensure that the battery power is
conserved as much as possible. Busy waiting
and interrupt polling is prohibited in all TinyOS
compatible devices. TinyOS programs execute
only in response to events; this is called the
event-driven programming model.

2.1. TinyOS Component Model

To address these issues, the TinyOS
Component Model was devised. The parts of
code in this model are organized into distinct
entities based on functionality. For example,
there may be an entity for operating the
integrated radio-transceiver unit. (In fact, there is
such an entity in TinyOS, it’s the rfm system
component.) These entities are associated with
a statically allocated memory portion (called
memory frame) and interconnected with other
such entities through interfaces. Such
completely described entities are called
components.

9

Figure 1: Block view of a TinyOS component

The memory frame is allocated at compile-time,
based on total memory requirements of the
component.
The interface consists of registered commands
and events, through which components
communicate. The main difference between the
two is in the fact that events propagate upward
in the connection chain (from device driver
components, such as aforementioned rfm,
through bottom level user components up to the
top level user components) and commands
propagate downward in the connection chain.
One component may choose to implement
several interfaces, each consisting of a number
of commands and events. More on this will be
mentioned later, in the chapter on component
interconnection.
The code contained in an individual TinyOS
component consists of:
Command handling routines, which they execute
in response to commands issued from other
connected components;

Event handling routines, which they execute in
response to events signalled by connected
components;
Tasks, which components themselves schedule
for later execution.

System Components and Pre-defined
Events

TinyOS comes with a certain number of system
components which perform the function of
device drivers. Examples include the already
mentioned rfm transceiver-operating
component, Photo and Temperature – the

components for manipulating photo and
temperature sensors, and so on.
In addition to pre-defined system components,
there is also a pre-defined interface StdControl,
consisting of events Init, Start and Stop. Each
TinyOS component has to implement this
interface by providing handlers. For example, an
Init event handler defines the response of the
component to the event of system initialization.
A component could use this handler in order to
initialize it’s state to initial values. Actual
execution of a program begins with handling of
the Start event, in the mandatory Main
component.

Component Configurations

Components are either modules or
configurations. Each TinyOS “program” is a
configuration of interconnected modules; each
module is an encapsulation of code based on
functionality, reminiscent of classes in object
oriented programming languages. Each
configuration and module is described in a
separate .nc file. Modules are connected
through interfaces. An interface is a collection of
events a given component can signal or be
notified of, and commands that a component
can issue or obey. Interfaces are also defined in
their separate .nc files. A configuration is formed
by connected by “software wiring” of the
interfaces. This is accomplished in two steps:
1. each module lists the desired interface in

either it’s uses {…} block, or it’s provides
{…} block;

2. a special line in the configuration code is
added, which establishes an unidirectional
link between an interface provider and
interface user. This is achieved with
following line of code:

User.UserInterfaceName ->
Provider.ProvInterfaceName
or, alternatively:
Provider.ProvInterfaceName <-
User.UserInterfaceName

(The UserInterfaceName part may be omitted, if
the interface names are the same.)

10

One example of an interface is the Timer
interface, through which the system component
for the on-board timer notifies the user
component of regularly spaced tick events. The
description of this interface is given in Timer.nc:

interface Timer {
 command result_t start(char type, uint32_t
interval);
 command result_t stop();
 event result_t fired();
}

From the source code, it should be clear that the
interface specifies one event – fired() – through
which the Timer provider notifies the user of
timer ticks, and accepts two commands – start,
which accepts the type and interval parameters
and starts the timer, and stop(), which stops the
timer.
The actual semantics of the words provider and
user might not be immediately clear: The events
and commands which are the part of the
interface are specified in the interface’s .nc file.
If a module declares itself to be a provider of a
given interface, then it’s responsible to
implement all commands listed by the interface,
and acquires the right (which it may or may not
use) to signal events to those users of said
interface to which it is connected through wiring.
Likewise, if a module declares itself to be a user
of an interface, then it is responsible to
implement event handlers for every single event
specified by the interface, and it attains the right
to issue commands to the provider of the used
interface.
In other words, the provider can signal events to
users, and users can issue commands to the
provider.

NesC “Hello World” program: Blink

To give an overview of the issues involved, we
consider a simple application that comes
bundled with the TinyOS distribution, called
Blink. As it name suggests, the Blink application
uses the on-board timer to periodically change
the state of a sensor node’s LED, producing a
blinking effect. The Blink application consists of
four connected components: Main, BlinkM,
SingleTimer and Leds, as seen in the
configuration declaration (Blink.nc):

configuration Blink {
}
implementation {
 components Main, BlinkM, SingleTimer, LedsC;
 // connecting Main to SingleTimer and BlinkM through
StdControl
 Main.StdControl -> SingleTimer.StdControl;
 Main.StdControl -> BlinkM.StdControl;
 BlinkM.Timer -> SingleTimer.Timer; // connecting BlinkM to
SingleTimer
 BlinkM.Leds -> LedsC; // connecting BlinkM to LedC
}

In this example, we can note the following:
Components Main, BlinkM, SingleTimer and
LedC are used. Code for these components is
elaborated in separate files (for example, BlinkM
code is found in BlinkM.nc)
In the last four lines before the ending bracket,
we can see how these components are
interconnected – through “wiring” of their
interfaces, using the notation
User.Interface -> Provider.Interface.
BlinkM, the central module of the application,
provides the StdControl interface, of which the
implicit component Main is the user. The
execution of the program “begins” with Main
issuing the commands “Init” and “Start” to
BlinkM. In response to these commands, BlinkM
will start the timer, through the Timer interface.
As BlinkM is notified of timer tick events, it
toggles the LED, by issuing commands to the
LedC component through the Leds interface.

11

//Implementation for Blink application:
// the red LED is toggled whenever Timer fires.
module BlinkM {
 provides {
 interface StdControl;
 }
 uses {
 interface Timer;
 interface Leds;
 }
}

implementation {
 //Handling of the Init command, issued by Main
 // just pass the Init command on to the Leds component
 command result_t StdControl.init() {
 call Leds.init();
 return SUCCESS; // SUCCESS is always returned
 }
 // Handling of the Start command, issued by Main:
 // set the rate for the clock component.
 command result_t StdControl.start() {
 // Start a repeating timer that fires every 1000ms
 return call Timer.start(TIMER_REPEAT, 1000);
 }
 // Handling of the Stop command, issued by Main:
 // stop the timer
 command result_t StdControl.stop() {
 return call Timer.stop();
 }
 // Handling the Fired event, issued by Timer:
 // issue redToggle command to Leds
 event result_t Timer.fired(){
 call Leds.redToggle();
 return SUCCESS;
 }
}

The configuration of the Blink application can be
summarized in the following diagram:

TinyOS: Conclusion

Programming in TinyOS is much simpler and
quicker compared to the Full Custom model of
assembly programming, and arguably easier,
too. Still, the TinyOS programming model has
suffered criticism for its still steep learning curve,
especially for programmers accustomed to
programming in established languages (such as
Java).

3. Sun SPOTs and the Squawk virtual
machine

The Squawk virtual machine, created by Sun
Microsystems for their Sun SPOT technology, is
one attempt at providing easier-to-use
programming model to developers for sensor
networks. Using Sun SPOTs and Squawk, a
sensor network developer can write applications
in a slightly modified versionof Java.
Squawk itself is a Java virtual machine running
directly on SPOT hardware, without an
underlying operating system. To facilitate
execution of such sophisticated software, Sun
SPOTs had to be designed with significantly
more powerful hardware, compared to the
TinyOS nodes (a Sun SPOT has a 180MHz 32-
bit processor). This might mean greater energy
consumption and less battery life, compared to
TinyOS nodes.

12

Programming Sun SPOTs

As mentioned already, Sun SPOTs are
programmed using a variation of Java language.
SunSPOT applications are MIDlets; the main
class of the SunSPOT application extends the
javax.microedition.midlet.MIDlet class, so
constructs typical for MIDlets, such as
startApp(), pauseApp() and destroyApp(), form
the skeleton of a Sun SPOT application.
Therefore, an “entry point” for a Sun SPOT
application is the startApp() method.
The whole functionality of the SPOT is
abstracted using the EDemoBoard class.
Typically, a programmer will obtain an instance
of this class using EDemoBoard.getInstance() in
the body of the startApp() method. Inputs
(sensors and switches) and outputs (LEDs) are
then reachable through Java interfaces, which
are obtained using demoBoardInstance.getxxx ()
methods. For example, a temperature reading
can be obtained using:

ITemperatureInput ourTempSensor =
EDemoBoard.getADCTemperature();
double celsiusTemp = ourTempSensor.getCelsius();
double fahrTemp = ourTempSensor.getFahrenheit();

A SunSPOT “Blink” application

As for TinyOS/nesC, we now present a Blink
(Hello World) application for Sun SPOTs.

Sun SPOTs/Squawk: A Conclusion

Sun SPOTs certainly provide an easier
programming model and as a result they are
very popular within certain educational circles.
However, their bulky size (compared to TinyOS-
based platforms), higher price (for non-
educational use) and higher battery
consumption still make them somewhat
impractical for some industrial applications.

package org.sunspotworld;
import com.sun.spot.sensorboard.EDemoBoard;
import com.sun.spot.sensorboard.peripheral.ISwitch;
import com.sun.spot.senso
 rboard.peripheral.ITriColorLED;
import com.sun.spot.util.*;
import javax.microedition.midlet.MIDlet;
import
javax.microedition.midlet.MIDletStateChangeException;

public class Blink extends MIDlet {
 private ITriColorLED [] leds =
EDemoBoard.getInstance().getLEDs();
 protected void startApp() throws
MIDletStateChangeException {
 System.out.println("Hello, world");
 ISwitch sw1 =
EDemoBoard.getInstance().getSwitches()[EDemoBoard.SW
1];
 leds[0].setRGB(100,0,0); // set color to moderate red
 while (sw1.isOpen()) { // done when switch is
pressed
 leds[0].setOn(); // Blink LED
 Utils.sleep(250); // wait 1/4 seconds
 leds[0].setOff();
 Utils.sleep(1000); // wait 1 second
 }
 notifyDestroyed(); // cause the MIDlet to exit
 }
 protected void pauseApp() {
 // This is not currently called by the Squawk VM
 }

protected void destroyApp(boolean unconditional) throws
MIDletStateChangeException {
 for (int i = 0; i < 8; i++) {
 leds[i].setOff();
 }
 }
}

4. References

[1] Philip Lewis, TinyOS Programming, 2006.
[2] TinyOS Documentation Wiki
[3] SunSPOT Developer’s Guide, SUN Microsystems,

2009.

