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Abstract - As with all other computing devices, 
sensor nodes have to be programmed in order to be 
able to do something useful. The similarity, for the 
most part, ends there. There is scant similarity 
between programming a home computer with 2 
gigahertz CPU and gigabytes of RAM and storage 
and programming a tiny device with just a dozen of 
kilobytes of RAM and an 8-bit processor running on 
just a few kilohertz. Still, programming sensor 
networks isn’t all that similar to embedded devices 
either: Programming embedded systems typically 
amounts to writing an assembly program and loading 
it into programmable ROM of the embedded device, 
while a sensor node usually has an operating system 
(such as TinyOS or ConTiki) which provides support 
for basic I/O operations, operation of the radio 
transceiver and so on. This article introduces the 
reader to general issues in sensor network 
programming and focuses on two different 
programming paradigms: NesC programming, for 
TinyOS compatible sensor nodes, and the Java 
Squawk virtual machine, created for Sun SPOTs. 
 

1. General Issues in Sensor Network 
Programming 
 
In personal computers, OS primitives are used 
to achieve hardware abstraction, thus lifting the 
burden of operating the peripherals directly from 
the programmer. Clearly, that approach is 
desirable in sensor nodes as well. Still, due to 
scarce, scaled resources of a sensor node, 
some compromises are required, most notably 
the need to conserve energy resources by 
providing an implicitly energy efficient 
programming model. 
 
The first obstacle we have to overcome is to 
choose the right operating system for the sensor 
node. All conventional OSes for embedded 
systems (such as Windows CE or PalmOS) 
require a ROM capacity of a hundred kilobytes 
or more; sensor nodes, however, typically have 
only a few kilobytes. The most popular solution 
today is the TinyOS, developed by U.C. 
Berkeley. Another option is the Java Squawk 
virtual machine, developed by Sun 
Microsystems for their Sun SPOT project. This 
article focuses on these two paradigms. 

2. The TinyOS Operating System 
 
For sensor nodes, a specialized operating 
system had to be devised; one that would 
provide the necessary primitives to operate the 
sensor node hardware, but would also cope with 
the quite limited resources of a sensor node. 
These limitations include: 
Not enough memory for stack. All TinyOS 
programs have to operate within a single 
context, as it is impossible to perform traditional 
context switching, due to a very small amount of 
memory available for stack. This also means 
that TinyOS programs can’t rely on registers to 
save state. 
Limited amount of memory. This means that 
what available memory there is has to be 
allocated carefully. Dynamic allocation of 
memory is prohibited; the TinyOS components 
are arranged into a configuration at compile-
time, and individual components each get their 
preassigned portion of memory, the memory 
frame. 
Limited amount of energy. Special care is 
taken to ensure that the battery power is 
conserved as much as possible. Busy waiting 
and interrupt polling is prohibited in all TinyOS 
compatible devices. TinyOS programs execute 
only in response to events; this is called the 
event-driven programming model. 

2.1. TinyOS Component Model 
 
To address these issues, the TinyOS 
Component Model was devised. The parts of 
code in this model are organized into distinct 
entities based on functionality. For example, 
there may be an entity for operating the 
integrated radio-transceiver unit. (In fact, there is 
such an entity in TinyOS, it’s the rfm system 
component.) These entities are associated with 
a statically allocated memory portion (called 
memory frame) and interconnected with other 
such entities through interfaces. Such 
completely described entities are called 
components. 
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Figure 1: Block view of a TinyOS component 
 
The memory frame is allocated at compile-time, 
based on total memory requirements of the 
component. 
The interface consists of registered commands 
and events, through which components 
communicate. The main difference between the 
two is in the fact that events propagate upward 
in the connection chain (from device driver 
components, such as aforementioned rfm, 
through bottom level user components up to the 
top level user components) and commands 
propagate downward in the connection chain. 
One component may choose to implement 
several interfaces, each consisting of a number 
of commands and events. More on this will be 
mentioned later, in the chapter on component 
interconnection. 
The code contained in an individual TinyOS 
component consists of: 
Command handling routines, which they execute 
in response to commands issued from other 
connected components; 
 
Event handling routines, which they execute in 
response to events signalled by connected 
components; 
Tasks, which components themselves schedule 
for later execution. 
 

System Components and Pre-defined 
Events 
 
TinyOS comes with a certain number of system 
components which perform the function of 
device drivers. Examples include the already 
mentioned rfm transceiver-operating 
component, Photo and Temperature – the 

components for manipulating photo and 
temperature sensors, and so on. 
In addition to pre-defined system components, 
there is also a pre-defined interface StdControl, 
consisting of events Init, Start and Stop. Each 
TinyOS component has to implement this 
interface by providing handlers. For example, an 
Init event handler defines the response of the 
component to the event of system initialization. 
A component could use this handler in order to 
initialize it’s state to initial values. Actual 
execution of a program begins with handling of 
the Start event, in the mandatory Main 
component. 
 

Component Configurations 
 
Components are either modules or 
configurations. Each TinyOS “program” is a 
configuration of interconnected modules; each 
module is an encapsulation of code based on 
functionality, reminiscent of classes in object 
oriented programming languages. Each 
configuration and module is described in a 
separate .nc file. Modules are connected 
through interfaces. An interface is a collection of 
events a given component can signal or be 
notified of, and commands that a component 
can issue or obey. Interfaces are also defined in 
their separate .nc files. A configuration is formed 
by connected by “software wiring” of the 
interfaces.  This is accomplished in two steps:  
1. each module lists the desired interface in 

either it’s uses {…} block, or it’s provides 
{…} block; 

2. a special line in the configuration code is 
added, which establishes an unidirectional 
link between an interface provider and 
interface user. This is achieved with 
following line of code: 

 
User.UserInterfaceName -> 
Provider.ProvInterfaceName 
or, alternatively: 
Provider.ProvInterfaceName <- 
User.UserInterfaceName 
 
(The UserInterfaceName part may be omitted, if 
the interface names are the same.) 
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One example of an interface is the Timer 
interface, through which the system component 
for the on-board timer notifies the user 
component of regularly spaced tick events. The 
description of this interface is given in Timer.nc: 
 
interface Timer { 
  command result_t start(char type, uint32_t 
interval); 
  command result_t stop(); 
  event result_t fired(); 
} 
 
 
From the source code, it should be clear that the 
interface specifies one event – fired() – through 
which the Timer provider notifies the user of 
timer ticks, and accepts two commands – start, 
which accepts the type and interval parameters 
and starts the timer, and stop(), which stops the 
timer. 
The actual semantics of the words provider and 
user might not be immediately clear: The events 
and commands which are the part of the 
interface are specified in the interface’s .nc file. 
If a module declares itself to be a provider of a 
given interface, then it’s responsible to 
implement all commands listed by the interface, 
and acquires the right (which it may or may not 
use) to signal events to those users of said 
interface to which it is connected through wiring. 
Likewise, if a module declares itself to be a user 
of an interface, then it is responsible to 
implement event handlers for every single event 
specified by the interface, and it attains the right 
to issue commands to the provider of the used 
interface. 
In other words, the provider can signal events to 
users, and users can issue commands to the 
provider. 
 

NesC  “Hello World” program: Blink 
 
To give an overview of the issues involved, we 
consider a simple application that comes 
bundled with the TinyOS distribution, called 
Blink. As it name suggests, the Blink application 
uses the on-board timer to periodically change 
the state of a sensor node’s LED, producing a 
blinking effect. The Blink application consists of 
four connected components: Main, BlinkM, 
SingleTimer and Leds, as seen in the 
configuration declaration (Blink.nc): 

configuration Blink { 
}  
implementation { 
  components Main, BlinkM, SingleTimer, LedsC; 
  // connecting Main to SingleTimer and BlinkM through 
StdControl   
  Main.StdControl -> SingleTimer.StdControl; 
  Main.StdControl -> BlinkM.StdControl;  
  BlinkM.Timer -> SingleTimer.Timer;  // connecting BlinkM to 
SingleTimer 
  BlinkM.Leds -> LedsC;               // connecting BlinkM to LedC 
} 
 
In this example, we can note the following: 
Components Main, BlinkM, SingleTimer and 
LedC are used. Code for these components is 
elaborated in separate files (for example, BlinkM 
code is found in BlinkM.nc) 
In the last four lines before the ending bracket, 
we can see how these components are 
interconnected – through “wiring” of their 
interfaces, using the notation  
User.Interface -> Provider.Interface. 
BlinkM, the central module of the application, 
provides the StdControl interface, of which the 
implicit component Main is the user. The 
execution of the program “begins” with Main 
issuing the commands “Init” and “Start” to 
BlinkM. In response to these commands, BlinkM 
will start the timer, through the Timer interface. 
As BlinkM is notified of timer tick events, it 
toggles the LED, by issuing commands to the 
LedC component through the Leds interface. 
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//Implementation for Blink application: 
// the red LED is toggled whenever Timer fires.  
module BlinkM {  
  provides {  
     interface StdControl;  
  }  
  uses {  
     interface Timer;  
     interface Leds;  
  }  
}  
 
implementation {  
  //Handling of the Init command, issued by Main 
  // just pass the Init command on to the Leds component 
  command result_t StdControl.init() {  
     call Leds.init();  
     return SUCCESS;   // SUCCESS is always returned 
  }  
  // Handling of the Start command, issued by Main: 
  // set the rate for the clock component.  
  command result_t StdControl.start() {  
  // Start a repeating timer that fires every 1000ms  
     return call Timer.start(TIMER_REPEAT, 1000);  
  }  
  // Handling of the Stop command, issued by Main: 
  // stop the timer  
  command result_t StdControl.stop() {  
     return call Timer.stop();  
  }  
  // Handling the Fired event, issued by Timer: 
  // issue redToggle command to Leds 
  event result_t Timer.fired(){  
     call Leds.redToggle();  
     return SUCCESS;  
  }  
} 
 
The configuration of the Blink application can be 
summarized in the following diagram: 
 

 

TinyOS: Conclusion 
 
Programming in TinyOS is much simpler and 
quicker compared to the Full Custom model of 
assembly programming, and arguably easier, 
too. Still, the TinyOS programming model has 
suffered criticism for its still steep learning curve, 
especially for programmers accustomed to 
programming in established languages (such as 
Java).  
 

3. Sun SPOTs and the Squawk virtual 
machine 
 
The Squawk virtual machine, created by Sun 
Microsystems for their Sun SPOT technology, is 
one attempt at providing easier-to-use 
programming model to developers for sensor 
networks. Using Sun SPOTs and Squawk, a 
sensor network developer can write applications 
in a slightly modified versionof Java. 
Squawk itself is a Java virtual machine running 
directly on SPOT hardware, without an 
underlying operating system. To facilitate 
execution of such sophisticated software, Sun 
SPOTs had to be designed with significantly 
more powerful hardware, compared to the 
TinyOS nodes (a Sun SPOT has a 180MHz 32-
bit processor). This might mean greater energy 
consumption and less battery life, compared to 
TinyOS nodes. 
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Programming Sun SPOTs 
 
As mentioned already, Sun SPOTs are 
programmed using a variation of Java language. 
SunSPOT applications are MIDlets; the main 
class of the SunSPOT application extends the 
javax.microedition.midlet.MIDlet class, so 
constructs typical for MIDlets, such as 
startApp(), pauseApp() and destroyApp(), form 
the skeleton of a Sun SPOT application. 
Therefore, an “entry point” for a Sun SPOT 
application is the startApp() method. 
The whole functionality of the SPOT is 
abstracted using the EDemoBoard class. 
Typically, a programmer will obtain an instance 
of this class using EDemoBoard.getInstance() in 
the body of the startApp() method. Inputs 
(sensors and switches) and outputs (LEDs) are 
then reachable through Java interfaces, which 
are obtained using demoBoardInstance.getxxx () 
methods. For example, a temperature reading 
can be obtained using: 
 
ITemperatureInput ourTempSensor = 
EDemoBoard.getADCTemperature(); 
double celsiusTemp = ourTempSensor.getCelsius(); 
double fahrTemp = ourTempSensor.getFahrenheit();  
 

A SunSPOT “Blink” application 
 
As for TinyOS/nesC, we now present a Blink 
(Hello World) application for Sun SPOTs. 
 

Sun SPOTs/Squawk: A Conclusion 
 
Sun SPOTs certainly provide an easier 
programming model and as a result they are 
very popular within certain educational circles. 
However, their bulky size (compared to TinyOS-
based platforms), higher price (for non-
educational use) and higher battery 
consumption still make them somewhat 
impractical for some industrial applications. 

 
package org.sunspotworld; 
import com.sun.spot.sensorboard.EDemoBoard; 
import com.sun.spot.sensorboard.peripheral.ISwitch; 
import com.sun.spot.senso
 rboard.peripheral.ITriColorLED; 
import com.sun.spot.util.*; 
import javax.microedition.midlet.MIDlet; 
import 
javax.microedition.midlet.MIDletStateChangeException; 
 
public class Blink extends MIDlet { 
    private ITriColorLED [] leds = 
EDemoBoard.getInstance().getLEDs(); 
    protected void startApp() throws 
MIDletStateChangeException { 
        System.out.println("Hello, world");                     
        ISwitch sw1 = 
EDemoBoard.getInstance().getSwitches()[EDemoBoard.SW
1]; 
        leds[0].setRGB(100,0,0);           // set color to moderate red 
        while (sw1.isOpen()) {             // done when switch is 
pressed 
            leds[0].setOn();               // Blink LED 
            Utils.sleep(250);              // wait 1/4 seconds 
            leds[0].setOff(); 
            Utils.sleep(1000);             // wait 1 second 
        } 
        notifyDestroyed();                 // cause the MIDlet to exit 
    } 
    protected void pauseApp() { 
        // This is not currently called by the Squawk VM 
    } 
 
protected void destroyApp(boolean unconditional) throws 
MIDletStateChangeException { 
        for (int i = 0; i < 8; i++) { 
            leds[i].setOff(); 
        } 
    } 
} 
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